Mudanças entre as edições de "Dago:Algoritmo Quadtree"

De WikiLICC
Ir para: navegação, pesquisa
m (# sub _checkOverlap() - private method)
m (Modo de usar)
 
(13 revisões intermediárias pelo mesmo usuário não estão sendo mostradas)
Linha 1: Linha 1:
 
Algorithm::QuadTree - Uma classe Algorithm QuadTree Algorithm em Perl puro.
 
Algorithm::QuadTree - Uma classe Algorithm QuadTree Algorithm em Perl puro.
 +
 +
==Outros links==
 +
* http://linux.softpedia.com/progDownload/Paramesh-Download-30235.html
  
 
==Descricao==
 
==Descricao==
Linha 41: Linha 44:
 
 
 
Cada objeto no mapa é atribuída ao nodos que intersecta. Por exemplo, se temos um objeto retangular que sobrepões regiões I<AAA> e I<AAC>, será atribuído aos nós I<root>, I<A>, I<AA>, I<AAA> e I<AAC>. Agora, suponhamos que queremos encontrar todos os objetos que cruzam uma determinada área. Em vez de checar todos os objetos, nós verificamos para ver qual dos filhos do nó raiz intersectam a área. Para cada um desses nós, nós recursivamente verificamos I<their> nós crianças, e assim por diante até chegar as folhas da árvore. Finalmente, encontramos todos os objetos que são atribuídos a esses nós folhas e verificamos eles por sobreposições com a área inicial.
 
Cada objeto no mapa é atribuída ao nodos que intersecta. Por exemplo, se temos um objeto retangular que sobrepões regiões I<AAA> e I<AAC>, será atribuído aos nós I<root>, I<A>, I<AA>, I<AAA> e I<AAC>. Agora, suponhamos que queremos encontrar todos os objetos que cruzam uma determinada área. Em vez de checar todos os objetos, nós verificamos para ver qual dos filhos do nó raiz intersectam a área. Para cada um desses nós, nós recursivamente verificamos I<their> nós crianças, e assim por diante até chegar as folhas da árvore. Finalmente, encontramos todos os objetos que são atribuídos a esses nós folhas e verificamos eles por sobreposições com a área inicial.
 
==Modo de usar==
 
    use Algorithm::QuadTree;
 
 
    # cria um objeto quadtree
 
    my $qt = Algorithm::QuadTree->new(
 
        -xmin  => 0, -xmax  => 1000, -ymin  => 0, -ymax  => 1000, -depth => 6);
 
 
    # adiciona objetos randomicamente
 
    my $x = my $tag = 1;
 
    while ($x < 1000) {
 
      my $y = 1;
 
      while ($y < 1000) {
 
        $qt->add($tag++, $x, $y, $x, $y);
 
 
        $y += int rand 200;
 
      }
 
      $x += int rand 100;
 
    }
 
 
    # acha os objetos dentro de uma certa região
 
    my $r_list = $qt->getEnclosedObjects(400, 300, 689, 799);
 
 
== Métodos da Classe ==
 
The following methods are public:
 
 
* I<Algorithm::QuadTree>-E<gt>B<new>(I<options>)
 
This is the constructor. It expects the following options (all mandatory) and
 
returns an Algorithm::QuadTree object:
 
** -xmin : This is the X-coordinate of the bottom left corner of the area associated with the quadtree.
 
** -ymin : This is the Y-coordinate of the bottom left corner of the area associated with the quadtree.
 
** -xmax : This is the X-coordinate of the top right corner of the area associated with the quadtree.
 
** -ymax : This is the Y-coordinate of the top right corner of the area associated with the quadtree.
 
** -depth : The depth of the quadtree.
 
 
* I<$qt>-E<gt>B<add>(ID, x0, y0, x1, y1)
 
This method is used to add objects to the tree. It has to be called for every object in the map so that it can properly assigned to the correct tree nodes. The first argument is a I<unique> ID for the object. The remaining 4 arguments define the outline of the object. This method will recursively traverse the tree and add the object to the nodes that it overlaps with.
 
 
NOTE: The method does I<NOT> check if the ID is unique or not. It is up to you to make sure it is.
 
 
* I<$qt>-E<gt>B<delete>(ID)
 
This method deletes the object specified by the given ID, and unassigns it from the tree nodes it was assigned to before.
 
 
* I<$qt>-E<gt>B<getEnclosedObjects>(x0, y0, x1, y1)
 
This method returns an <anonymous list> of all the objects that are assigned to the nodes that overlap the given area.
 
 
* I<$qt>-E<gt>B<setWindow>(x0, y0, scale)
 
This method is useful when you zoom your display to a certain segment of the map. It sets the window to the given region such that any calls to
 
B<add> or B<getEnclosedObjects> will have its coordinates properly adjusted before running. The first two coordinates specify the lower left coordinates
 
of the new window. The third coordinate specifies the new zoom scale.
 
 
NOTE: You are free, of course, to make the coordinate transformation yourself.
 
 
* I<$qt>-E<gt>B<resetWindow>()
 
This method resets the window region to the full map.
 
 
 
 
== INSTALLATION ==
 
 
Either the usual:
 
perl Makefile.PL
 
make
 
make install
 
or just stick it somewhere in @INC where perl can find it. It is in pure Perl.
 
 
==Algoritmo QuadTree==
 
package Algorithm::QuadTree;
 
 
use strict;
 
use Carp;
 
 
our $VERSION = 0.1;
 
 
1;
 
 
 
 
==# sub new() - constructor==
 
#
 
# Arguments are a hash:
 
#
 
# -xmin  => minimum x value
 
# -xmax  => maximum x value
 
# -ymin  => minimum y value
 
# -ymax  => maximum y value
 
# -depth => depth of tree
 
#
 
# Creating a new QuadTree objects automatically
 
# segments the given area into quadtrees of the
 
# specified depth.
 
###############################
 
sub new {
 
    my $self  = shift;
 
    my $class = ref($self) || $self;
 
 
    my $obj  = bless {} => $class;
 
 
    $obj->{BACKREF} = {};
 
    $obj->{OBJECTS} = [];
 
    $obj->{ORIGIN}  = [0, 0];
 
    $obj->{SCALE}  = 1;
 
 
    my %args  = @_;
 
 
    for my $arg (qw/xmin ymin xmax ymax depth/) {
 
    unless (exists $args{"-$arg"}) {
 
        carp "- must specify $arg";
 
        return undef;
 
    }
 
 
    $obj->{uc $arg} = $args{"-$arg"};
 
    }
 
 
    $obj->_segment;
 
 
    return $obj;
 
}
 
 
==# sub _segment() - private method==
 
#
 
# This method does the actual segmentation
 
# and stores everything internally.
 
###############################
 
sub _segment {
 
    my $obj = shift;
 
 
    $obj->_addLevel(
 
            $obj->{XMIN},
 
            $obj->{YMIN},
 
            $obj->{XMAX},
 
            $obj->{YMAX},
 
            1,            # current depth
 
            0,            # current index
 
            undef,        # parent index
 
            );
 
 
}
 
 
==# sub _addLevel() - private method==
 
#
 
# This method segments a given area
 
# and adds a level to the tree.
 
###############################
 
sub _addLevel {
 
    my ($obj, $xmin, $ymin, $xmax, $ymax, $curDepth, $index, $parent,) = @_;
 
 
 
    $obj->{AREA}    [$index] = [$xmin, $ymin, $xmax, $ymax];
 
    $obj->{PARENT}  [$index] = $parent;
 
    $obj->{CHILDREN}[$index] = [];
 
    $obj->{OBJECTS} [$index] = [];
 
 
    if (defined $parent) {
 
    push @{$obj->{CHILDREN}[$parent]} => $index;
 
    }
 
 
    return if $curDepth == $obj->{DEPTH};
 
 
    my $xmid = $xmin + ($xmax - $xmin) / 2;
 
    my $ymid = $ymin + ($ymax - $ymin) / 2;
 
 
    # now segment in the following order (doesn't matter):
 
    # top left, top right, bottom left, bottom right
 
    $obj->_addLevel($xmin, $ymid, $xmid, $ymax,  # tl
 
            $curDepth + 1, 4 * $index + 1, $index);
 
    $obj->_addLevel($xmid, $ymid, $xmax, $ymax,  # tr
 
            $curDepth + 1, 4 * $index + 2, $index);
 
    $obj->_addLevel($xmin, $ymin, $xmid, $ymid,  # bl
 
            $curDepth + 1, 4 * $index + 3, $index);
 
    $obj->_addLevel($xmid, $ymin, $xmax, $ymid,  # br
 
            $curDepth + 1, 4 * $index + 4, $index);
 
}
 
 
==# sub add() - public method==
 
#
 
# This method adds an object to the tree.
 
# The arguments are a unique tag to identify
 
# the object, and the bounding box of the object.
 
# It automatically assigns the proper quadtree
 
# sections to each object.
 
###############################
 
sub add {
 
    my ($self,
 
    $objRef,
 
    @coords,
 
    ) = @_;
 
 
    # assume that $objRef is unique.
 
    # assume coords are (xmin, ymix, xmax, ymax).
 
 
    # modify coords according to window.
 
    @coords = $self->_adjustCoords(@coords);
 
 
    ($coords[0], $coords[2]) = ($coords[2], $coords[0]) if $coords[2] < $coords[0];
 
    ($coords[1], $coords[3]) = ($coords[3], $coords[1]) if $coords[3] < $coords[1];
 
 
    $self->_addObjToChild(
 
              0,        # current index
 
              $objRef,
 
              @coords,
 
              );
 
}
 
 
==# sub _addObjToChild() - private method==
 
#
 
# This method is used internally. Given
 
# a tree segment, an object and its area,
 
# it checks to see whether the object is to
 
# be included in the segment or not.
 
# The object is not included if it does not
 
# overlap the segment.
 
###############################
 
 
sub _addObjToChild {
 
    my ($self, $index, $objRef, @coords,) = @_;
 
 
    # first check if obj overlaps current segment.
 
    # if not, return.
 
    my ($cxmin, $cymin, $cxmax, $cymax) = @{$self->{AREA}[$index]};
 
 
    return if
 
    $coords[0] > $cxmax || $coords[2] < $cxmin ||
 
    $coords[1] > $cymax || $coords[3] < $cymin;
 
 
    # Only add the object to the segment if we are at the last
 
    # level of the tree.
 
    # Else, keep traversing down.
 
 
    unless (@{$self->{CHILDREN}[$index]}) {
 
    push @{$self->{OBJECTS}[$index]}  => $objRef;    # points from leaf to object
 
    push @{$self->{BACKREF}{$objRef}} => $index;    # points from object to leaf
 
 
    } else {
 
    # Now, traverse down the hierarchy.
 
    for my $child (@{$self->{CHILDREN}[$index]}) {
 
        $self->_addObjToChild(
 
                  $child, $objRef, @coords,
 
                  );
 
    }
 
    }
 
}
 
 
==# sub delete() - public method==
 
#
 
# This method deletes an object from the tree.
 
###############################
 
sub delete {
 
    my ($self, $objRef,) = @_;
 
 
    return unless exists $self->{BACKREF}{$objRef};
 
 
    for my $i (@{$self->{BACKREF}{$objRef}}) {
 
    $self->{OBJECTS}[$i] = grep {$_ ne $objRef} @{$self->{OBJECTS}[$i]};
 
    }
 
 
    delete $self->{BACKREF}{$objRef};
 
}
 
 
==# sub getEnclosedObjects() - public method==
 
#
 
# This method takes an area, and returns all objects
 
# enclosed in that area.
 
###############################
 
 
sub getEnclosedObjects {
 
    my ($self,
 
    @coords) = @_;
 
 
    $self->{TEMP} = [];
 
 
    @coords = $self->_adjustCoords(@coords);
 
 
    $self->_checkOverlap(
 
              0,  # current index
 
              @coords,
 
              );
 
 
    # uniquify {TEMP}.
 
    my %temp;
 
    @temp{@{$self->{TEMP}}} = undef;
 
 
    # PS. I don't check explicitly if those objects
 
    # are enclosed in the given area. They are just
 
    # part of the segments that are enclosed in the
 
    # given area. TBD.
 
 
    return [keys %temp];
 
}
 
 
==# sub _adjustCoords() - private method==
 
#
 
# This method adjusts the given coordinates
 
# according to the stored window. This is used
 
# when we 'zoom in' to avoid searching in areas
 
# that are not visible in the canvas.
 
###############################
 
sub _adjustCoords {
 
    my ($self, @coords) = @_;
 
 
    # modify coords according to window.
 
    $_ = $self->{ORIGIN}[0] + $_ / $self->{SCALE}
 
    for $coords[0], $coords[2];
 
    $_ = $self->{ORIGIN}[1] + $_ / $self->{SCALE}
 
    for $coords[1], $coords[3];
 
 
    return @coords;
 
}
 
 
==# sub _checkOverlap() - private method==
 
#
 
# This method checks if the given coordinates overlap
 
# the specified tree segment. If not, nothing happens.
 
# If it does overlap, then it is called recuresively
 
# on all the segment's children. If the segment is a
 
# leaf, then its associated objects are pushed onto
 
# a temporary array for later access.
 
###############################
 
sub _checkOverlap {
 
    my ($self,
 
    $index,
 
    @coords,
 
    ) = @_;
 
 
    # first check if obj overlaps current segment.
 
    # if not, return.
 
    my ($cxmin, $cymin, $cxmax, $cymax) = @{$self->{AREA}[$index]};
 
 
    return if
 
    $coords[0] >= $cxmax ||
 
    $coords[2] <= $cxmin ||
 
    $coords[1] >= $cymax ||
 
    $coords[3] <= $cymin;
 
 
    unless (@{$self->{CHILDREN}[$index]}) {
 
    push @{$self->{TEMP}} => @{$self->{OBJECTS}[$index]};
 
    } else {
 
    # Now, traverse down the hierarchy.
 
    for my $child (@{$self->{CHILDREN}[$index]}) {
 
        $self->_checkOverlap(
 
                  $child,
 
                  @coords,
 
                  );
 
    }
 
    }
 
}
 
 
==# sub setWindow() - public method==
 
#
 
# This method takes an area as input, and
 
# sets it as the active window. All new
 
# calls to any method will refer to that area.
 
###############################
 
sub setWindow {
 
    my ($self, $sx, $sy, $s) = @_;
 
 
    $self->{ORIGIN}[0] += $sx / $self->{SCALE};
 
    $self->{ORIGIN}[1] += $sy / $self->{SCALE};
 
    $self->{SCALE}    *= $s;
 
}
 
 
==# sub setWindow() - public method==
 
# This resets the window.
 
###############################
 
sub resetWindow {
 
  my $self = shift;
 
 
  $self->{ORIGIN}[$_] = 0 for 0 .. 1;
 
  $self->{SCALE}      = 1;
 
}
 
 
==Autor==
 
Ala Qumsieh I<aqumsieh@cpan.org>
 
* http://search.cpan.org/dist/Algorithm-QuadTree/
 
 
==Copyrights==
 
This module is distributed under the same terms as Perl itself.
 

Edição atual tal como às 00h22min de 13 de abril de 2010

Algorithm::QuadTree - Uma classe Algorithm QuadTree Algorithm em Perl puro.

Outros links

Descricao

Algoritmo::QuadTree implementa um algoritmo quadtree (QTA) em puro Perl. Essencialmente, um I<QTA> é usado para acessar uma determinada área de um mapa muito rapidamente. Isto é especialmente útil em encontrar objetos dentro de uma determinada região, ou na detecção de interseção entre os objetos. Na verdade, eu escrevi este módulo de pesquisa rápida através de objetos em um widget L<Tk::Canvas>, mas tenho utilizado em outros programas não-Tk com êxito. É um clássico trade-off entre memória/velocidade.

Muita informação sobre QTAs podem ser encontrados na web. Mas, muito sucintamente, uma quadtree é um modelo de dados hierárquico que recursivamente decompuser um mapa em pequenas regiões. Cada nó na árvore tem 4 nós filhos, cada um dos quais representa um quarto da área que o pai representa. Então, o nó raiz representa o mapa completo. Este mapa é então dividido em 4 quartos iguais, cada um dos quais é representado por um nó filho. Cada uma dessas crianças é agora tratado como um pai, e sua área é recursivamente dividido em 4 áreas iguais, e assim por diante até uma profundidade desejada.

Aqui está um diagrama:

                  ------------------------------
                 |AAA|AAB|       |              |
                 |___AA__|  AB   |              |
                 |AAC|AAD|       |              |
                 |___|___A_______|      B       |
                 |       |       |              |
                 |       |       |              |
                 |   AC  |   AD  |              |
                 |       |       |              |
                  -------------ROOT-------------
                 |               |              |
                 |               |              |
                 |               |              |
                 |      C        |      D       |
                 |               |              |
                 |               |              |
                 |               |              |
                  ------------------------------

que corresponde a quadtree:

                   __ROOT_
                  /  / \  \
                 /  /   \  \
           _____A_  B   C   D
          /  / \  \
         /  /   \  \
    ____AA  AB  AC  AD
   /  / \  \
  /  /   \  \
AAA AAB AAC AAD

Nos diagramas acima, mostro somente os nós através da primeiro ramo de cada nível. A mesma estrutura existe em cada nó. Esta quadtree tem uma profundidade de 4.


Cada objeto no mapa é atribuída ao nodos que intersecta. Por exemplo, se temos um objeto retangular que sobrepões regiões I<AAA> e I<AAC>, será atribuído aos nós I<root>, I<A>, I<AA>, I<AAA> e I<AAC>. Agora, suponhamos que queremos encontrar todos os objetos que cruzam uma determinada área. Em vez de checar todos os objetos, nós verificamos para ver qual dos filhos do nó raiz intersectam a área. Para cada um desses nós, nós recursivamente verificamos I<their> nós crianças, e assim por diante até chegar as folhas da árvore. Finalmente, encontramos todos os objetos que são atribuídos a esses nós folhas e verificamos eles por sobreposições com a área inicial.