Mudanças entre as edições de "Usuário:Manoel"

De WikiLICC
Ir para: navegação, pesquisa
(Perfil de Velocidade na Região de Escoamento Completamente Desenvolvido)
m (Cronograma)
 
(33 revisões intermediárias por 2 usuários não estão sendo mostradas)
Linha 1: Linha 1:
 
Página Wiki do Manoel.
 
Página Wiki do Manoel.
  
Testar quando n=3?
+
==Perguntas==
 +
Para ser válido o modelo, o fluido deve satisfazer o conceito de continuum da mecânica:
 +
* http://en.wikipedia.org/wiki/Continuum_mechanics
 +
* [http://en.wikipedia.org/wiki/Knudsen_number Número de Knudsen]
 +
* [http://en.wikipedia.org/wiki/Fluid_mechanics#Assumptions]
  
Olhar (inv(Q)*S' )?
+
Responder:
 +
* Qual o número de Knudsen do seu problema?
 +
* Extra: Qual o número de Knudsen de um problema de simulação no espaço?
  
==Problema da Cavidade==
+
==Problemas estudados==
 +
* [[Problema da Cavidade]]
 +
* [[Malha]] não uniforme
  
Para visualizarmos este problema podemos imaginar uma piscina cheia de água e um vento soprando sobre sua borda,
+
==Links==
o estudo fica em analisar o movimento da água dentro da piscina.
+
* [http://en.wikipedia.org/wiki/Capillary_electrophoresis Eletroforese capilar]
A maioria das simulações numéricas envolvendo problemas da cavidade utilizam as equações de Navier Stokes. As equações de Navier Stokes são equações diferenciais que descrevem o movimento de fluidos. Como por exemplo:
+
* Mais sobre [http://www.mtc-usa.com/ce.asp eletroforese capilar]
:<math>
+
* [http://pt.wikipedia.org/wiki/Eletroforese_em_gel Eletroforese em gel]
(1) u_t +(u \cdot \nabla ) u =- \nabla p + (1/Re) \nabla^2 u
+
* [http://pt.wikipedia.org/wiki/Prote%C3%ADna_globular Macromolécula]
</math>
+
* [http://pt.wikipedia.org/wiki/Hemoglobina Hemoglobina]
:<math>
+
* [http://www.shsu.edu/~chm_tgc/sounds/sound.html Alguns filmes explicativos]
(2) \nabla\cdot u=0
 
</math>
 
onde <math>u=(u,v)</math> é a velocidade do fluido, <math>p</math> é a pressão e <math>Re</math> é  número de Reynolds
 
 
 
;condições de contorno
 
 
 
* lado oeste u=U, v=0
 
* lado sul  u=v=0 
 
* lado oeste u=v=0
 
* lado leste u=v=0
 
 
 
onde a velocidade do U é calculada a partir da equação
 
<math> Re=UL/{\mu} </math> , onde <math>Re</math>  é o número de Reynolds, <math>L</math> longitude característica do fluxo, e  <math> \mu </math>=<math>1,5x10^{-5}</math>  é a viscosidade do fluido.
 
:[[Imagem:Cavidade2.jpg]]
 
:[[Imagem:Figura1.jpg]]
 
==Perfil de Velocidade na Região de Escoamento Completamente Desenvolvido==
 
A forma do perfil de velocidade pode ser facilmente determinada para o escoamento laminar e incompressível de um fluido com propriedades constantes em um tubo circular na região completamente desenvolvida. Uma caracteristicas importantes das condições fluidodinâmicas na região de  escoamento completamente desenvolvido é que o componente radialda velocidade <math>v</math> e o gradiente do componente axial da velocidade,<math>\left(\frac{\partial u}{\partial x}\right) \,\! </math>,são iguais a zero qualquer que seja a posição. <math>v=0</math> e <math>\left(\frac{\partial u}{\partial x}\right)=0 \,\!  </math>, Assim, o componente axial da velocidade depende somente de r, ou seja, <math>u(x,r)=u(r)  \,\!</math>.
 
A dependência radial da velocidade axial pode ser obtida através da resolução da forma apropriada da equação do momento na direção x. Essa forma é determinada, em primeiro lugar, pelo reconhecimento de que para as condições da Eq. <math>v=0</math> e <math>\left(\frac{\partial u}{\partial x}\right)=0 \,\!  </math>, o fluxo líquido de momento é nulo em qualquer ponto no inteiro da região de escoamento completamente desenvolvido. dessa forma, a exigência de conservação do momento se reduz a um simples balanço entre as forças de cisalhamento e as forças de pressão no escoamento. O balanço de forças pode ser representado como
 
:<math>(1)  - \frac{d}{dr}(r \tau_{r})= r \frac{dp}{dx} \,\!
 
</math>
 
e como <math>y=r_{0} - r  \,\!</math>, a lei da viscosidade de Newton :<math>\left( \tau = \mu \frac{\partial u}{\partial y}\right) \,\! </math>,(onde a constante <math> \mu \,\!</math> é o coeficiente de viscosidade), assume a forma <math>\tau_{r}=-\mu \frac{du}{dr} \,\!</math> e substituindo na equação (1) se torna
 
:<math> (2) \frac{\mu}{r} \frac{d}{dr} \left(r \frac{du}{dr}\right)=\frac{dp}{dx}\,\!
 
</math>
 
Uma vez que o gradiente de pressão na direção axial é independente de r, a Eq. (2) pode ser resolvida com duas integrações, onde na primeira integral obtem-se da seguinte forma 
 
:<math>  \frac{\mu}{r} \frac{d}{dr} \left(r \frac{du}{dr}\right)=\frac{dp}{dx}\,\!
 
</math>
 
:<math> \int \frac{d}{dr} \left(r \frac{du}{dr}\right)= \int \frac{r}{\mu}\frac{dp}{dx}dr \,\!
 
</math>
 

Edição atual tal como às 00h23min de 13 de abril de 2010

Página Wiki do Manoel.

Perguntas

Para ser válido o modelo, o fluido deve satisfazer o conceito de continuum da mecânica:

Responder:

  • Qual o número de Knudsen do seu problema?
  • Extra: Qual o número de Knudsen de um problema de simulação no espaço?

Problemas estudados

Links